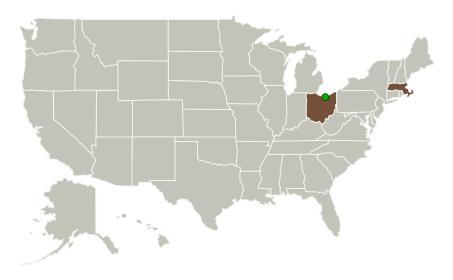
# Mesoporous Silicon-Based Anodes for High Capacity, High Performance Li-ion Batteries, Phase II




Completed Technology Project (2011 - 2013)

#### **Project Introduction**

A new high capacity anode composite based on mesoporous silicon is proposed. By virtue of a structure that resembles a pseudo one-dimensional phase, the active anode material will be able to accommodate significant volume changes expected upon alloying and de-alloying with lithium. The mesoporosity will be created without the aid of a surfactant template using a novel high volume synthetic process. The anode composite based on this material is designed to have a reversible Li-ion capacity exceeding 600 mAh/g or nearly twice that obtainable with graphite anodes; indeed much higher capacities could be practically attainable. Phase I successfully demonstrated the synthesis of this new meso-Si material as well as its high electrochemical activity and rechargeability. An expanded investigation on the development of mesoporous Si-based Li-ion anode is the principal objective in Phase II. The optimum anode will be evaluated in Li-ion cells containing 4V oxide cathodes.

#### **Primary U.S. Work Locations and Key Partners**



| Organizations<br>Performing Work | Role         | Туре     | Location      |
|----------------------------------|--------------|----------|---------------|
| EIC Laboratories,                | Lead         | Industry | Norwood,      |
| Inc.                             | Organization |          | Massachusetts |
| Glenn Research Center(GRC)       | Supporting   | NASA     | Cleveland,    |
|                                  | Organization | Center   | Ohio          |



Mesoporous Silicon-Based Anodes for High Capacity, High Performance Li-ion Batteries, Phase II

### **Table of Contents**

| Project Introduction          |   |
|-------------------------------|---|
| Primary U.S. Work Locations   |   |
| and Key Partners              | 1 |
| Project Transitions           |   |
| Organizational Responsibility | 2 |
| Project Management            |   |
| Technology Maturity (TRL)     | 3 |
| Technology Areas              | 3 |
| Target Destinations           |   |
| rangee Beschhaerons           | _ |



#### Small Business Innovation Research/Small Business Tech Transfer

# Mesoporous Silicon-Based Anodes for High Capacity, High Performance Li-ion Batteries, Phase II



Completed Technology Project (2011 - 2013)

| Primary U.S. Work Locations |      |
|-----------------------------|------|
| Massachusetts               | Ohio |

#### **Project Transitions**

0

June 2011: Project Start



June 2013: Closed out

#### **Closeout Documentation:**

• Final Summary Chart(https://techport.nasa.gov/file/139084)

# Organizational Responsibility

# Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

#### **Lead Organization:**

EIC Laboratories, Inc.

#### **Responsible Program:**

Small Business Innovation Research/Small Business Tech Transfer

### **Project Management**

#### **Program Director:**

Jason L Kessler

### **Program Manager:**

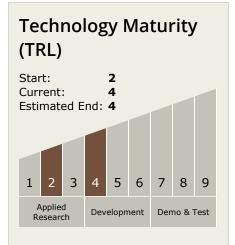
Carlos Torrez

#### **Principal Investigator:**

Dharmasena Peramunage

#### Co-Investigator:

Dharmasena Peramunage




Small Business Innovation Research/Small Business Tech Transfer

# Mesoporous Silicon-Based Anodes for High Capacity, High Performance Li-ion Batteries, Phase II



Completed Technology Project (2011 - 2013)



### **Technology Areas**

#### **Primary:**

- TX03 Aerospace Power and Energy Storage
   TX03.2 Energy Storage
  - ☐ TX03.2.1 Electrochemical: Batteries

### **Target Destinations**

The Moon, Mars, Outside the Solar System, The Sun, Earth, Others Inside the Solar System

